
Charting the Temporal Topology: Enumerating the
Global NTP Server Network

Rein Fernhout
Design and Analysis of Communication Systems

University of Twente
Enschede, Netherlands

r.p.j.fernhout@student.utwente.nl

Abstract—Network Time Protocol (NTP) servers play a criti�
cal role in maintaining synchronized time across the internet,
enabling accurate timekeeping for a wide range of applications
and services. In the early 2010s, NTP servers were abused in
DDoS attacks through the use of diagnostic commands, such as
monlist [1]. Much effort has been put into eliminating this kind
of abuse, so that the usage of NTP in DDoS has declined [2].
However, some abuse remains prevalent today [3], while research
into the network has stagnated. In this work, we do a current,
global analysis of NTP servers on the IPv4 address space. We
do so by developing a two�phase scanning technique, utilizing
both ZMap and a custom tool called ntpscan. In our analysis we
use reported characteristics of NTP servers like the reference
ID and stratum, as well as a novel NTP daemon fingerprinting
technique based on the version field in response packets. Using
these methods we’ve detected over 5 million active NTP servers.
We show that these servers report a wide range of operating
systems, architectures, daemon versions and clock sources. We
found 6617 servers with the monlist command enabled and
measured their response sizes.

Index Terms—Network Time Protocol, Network Enumeration,
DDOS Amplification, Network Survey

I. Introduction

The Network Time Protocol (NTP) is a networking protocol
designed to synchronize the clocks of computers over a
network.

The protocol attracted significant research attention in the
2010s, following its exploitation in large-scale DDoS ampli-
fication attacks.

However, while academic research into the network has
stagnated in recent years, the NTP ecosystem itself has
remained dynamic, with growing interest in the development
and adoption of new server implementations like chronyd,
ntpsec, and ntpd-rs.

We want to provide insight into the current state of the
network. We are interested in the amount of NTP servers
that are publicly accessible, their software versions and their
behavioral characteristics.

Additionally, we are interested in the ability of the current
network to still be used for DDoS amplification. In 2021, NTP
was reportedly still commonly used in DDoS attacks [3]. The
prevalence of these attacks suggests there may still be some
vulnerable servers on the internet today.

In this paper, we show our methods for doing a global
survey of the NTP network. This methodology combines the
existing tool ZMap with the development of a custom NTP

analysis tool called ntpscan. We additionally experiment with
novel ways of classifying NTP servers based on their behavior.

To tackle this problem, we propose a number of research
questions (RQ).
A. Research Question 1

How can we reliably discover an NTP server?
B. Research Question 2

How can we gather descriptive information from an NTP
server?
C. Research Question 3

Using the methods from RQ1 and RQ2, what are the charac-
teristics of discoverable NTP servers?

II. Background

A. Network Time Protocol

The Network Time Protocol is a protocol operating on UDP
for synchronizing time across a network. It allows for a
distributed network of reference servers, layered in strata, to
serve accurate time from source clocks, like radio sources
and GPS satellites, to clients over the internet. The following
section will briefly explain some parts of the protocol that are
relevant to our work.

In NTP, packets have a so-called Association Mode. In
typical client-server interaction, the client will send mode
3 (client) packets, while the servers sends mode 4 (server)
packets. The available modes are shown in Table I.

TABLE I: Association Modes

value meaning

0 reserved

1 symmetric active

2 symmetric passive

3 client

4 server

5 broadcast

6 NTP control message

7 reserved for private use

mailto:r.p.j.fernhout@student.utwente.nl

Mode 6 (NTP control message) allows reading and potentially
setting certain variables on a server. Mode 7 (private use) may
be used by a daemon to extend the protocol. A typical client/
server interaction uses mode 3 and 4 and the packet header
shown in Fig. 1.

0 8 16 24 31

LI VN Mode Stratum Poll Precision

Root Delay (round-trip to reference)

Root Dispersion (dispersion to reference)

Reference ID (identifier of server or clock)

Reference Timestamp (when system time was last corrected)

Origin Timestamp (time at receiving party when request departed)

Receive Timestamp (time at sending party when request arrived)

Transmit Timestamp (time at sending party when packet departed)

Fig. 1: NTP Packet Header Format

The NTP Project has a reference implementation for NTP
called ntpd. Though it has also been called xntpd, we will
refer to it as ntpd. We will use the term daemon to refer
to arbitrary NTP server software, and we will use the term
server to refer to a host that is serving NTP.
B. DDoS Amplification using NTP

UDP DDoS amplification is a technique where an attacker
uses a public server running a UDP-based protocol to amplify
a DDoS attack. This is done by finding a service (the ampli-
fier) that can be made to respond with more data than it
receives. Once such an amplifier is identified, the attacker
sends UDP packets to the service with a spoofed source-IP
of the victim.

NTP specifies a mode 6 command called read variables,
which returns a large list of values about the server. Addi-
tionally, the reference implementation ntpd used to support a
monitoring command called monlist, which returns the IPs of
the last 600 peers [4]. monlist is not referenced in any RFC
because it was implemented using mode 7 (private use). Both
of these commands, though particularly the latter, can be used
for DDoS amplification.

At the end of 2013, attackers started using these two
NTP commands (especially monlist) as DDoS amplifiers. This
quickly escalated, and the first quarter of 2014 would see 85%
of DDoS attacks over 100Gbps use NTP [1].

Part of those attacks was a record-breaking 400Gbps attack
on a Cloudflare (a DDOS mitigation service) client. This
attack was big enough to cause network congestion in parts
of Europe [5].

During this period, multiple researchers scanned the inter-
net continuously for NTP amplifying servers [1], [2], [6],
[7]. A campaign was started to reduce NTP amplifiers on
the internet, which resulted in nearly 92% of NTP monlist
amplifiers to be shut down within 13 weeks [2].

As a result of these efforts, many servers stopped respond-
ing to monlist request packets. However, even to this day,
DDoS amplification attacks through NTP are still common
[3], [8]. This suggests that there are still servers on the internet
with the monlist or read variables commands enabled.

III. Related works

In 1999, an attempt was made to survey the entire NTP
network [9]. However, the method used was walking the
network graph, instead of scanning the entire address range.
This was done by asking hosts for their peer list and monitor
list, using the private mode peers and monlist commands, and
then visiting the resulting hosts with a spider program.
Kührer et al (2014) tracked NTP amplifiers from the end of
2013 to the end of 2016, as part of a large-scale campaign
to notify administrators of the amplification problems in NTP
[2]. Their data shows that the campaign caused nearly 95%
of NTP amplifiers to be shut down in just six months.
In the same period, openntpproject.org (ONP) also scanned
for NTP servers that respond to monlist. The scan was
performed using the ntpdc tool shipped with the reference
implementation.
Czyz et al (2014) also scanned NTP servers around this time.
They drew comparisons between their data set and those of
Kührer and ONP [1].
Rudman (2015) scanned NTP DDoS related traffic in South-
Africa in the same period. They specifically focused on the
TTL values of NTP DDoS traffic [6].

Because Kührer et al (2014) only sent mode 6 readvars
and mode 7 monlist commands, Rytilahti et al (2018) later
complemented the data with two additional scans, which also
included a generic mode 3 client request [7]. In the same
paper, they also constantly requested time at public time
services via DNS. They used the NTP pool, the ntp.org server
list and servers from major vendors, like Google or Apple.
They then tracked what IP addresses the domains resolved to.

IV. Methods

We decided to split our survey into two scans. First, we do a
preliminary scan, with the sole purpose of listing all public
NTP servers on the IPv4 address space. We then perform a
second scan, which attempts to extract information from the
servers found in the preliminary scan.
A. For reliably identifying NTP servers (RQ1)

Because NTP operates on UDP, discovery is trickier than with
TCP services. The only way to verify that a server offers NTP
is to send a valid NTP request and receive a response. A few
existing tools can be used to probe UDP services. We decided
to utilize zmap [10].

For the payload, we looked at another scanning tool called
nmap, which is shipped with two NTP related probes found in
its nmap-service-probes file, which nmap uses during
its service/version scan. These probes are a mode 3 client
request and a mode 1 symmetric active request. We extracted

these probes for use with zmap. zmap was locally compiled
from the master branch, commit 5ee08f4.

We chose zmap for its efficiency and ability to maintain
a constant send rate. Our scan was performed at a rate of
100Mbps for a duration of 8 hours.

We used the default zmap blocklist, along with an additional
blocklist provided by the university. This scan provided us
with a long list of IPs that returned a response to one of
the probes.
B. For gathering useful information from an NTP server
(RQ2)

We developed a scanning routine that contains three parts.
The type of packets we sent are mode 6 readvars, mode 7
monlist and mode 3 client packets.

a) Mode 6 readvars: The most obvious method of getting
information from an NTP server is via the mode 6 read vari-
ables (also referred to as readvars) command. This command
can be used to retrieve a set of variables from the daemon,
including information like the daemon name and version,
reference ID as an ASCII string, operating system and archi-
tecture.

However, not all daemons allow public access of this
command.

b) Mode 7 monlist: The NTP specification has a mode
reserved for private use. Ever since the first versions of xntpd,
this was used as a way to add additional monitoring capabil-
ities. The functionality of this command is now embedded in
the mode 6 mrulist command. The mode 7 implementation
in ntpd has slightly changed during its lifetime. Specifically,
there is a pre-ipv6 and a post-ipv6 version, which use
different implementation codes, namely IMPL_XNTPD and
IMPL_XNTP_OLD. Additionally, there are two opcodes for
monlist commands, REQ_MONLIST and REQ_MONLIST_1.
During our scan, we tried all four combinations of implemen-
tation codes and opcodes.

c) Mode 3 version responses: Because not all servers re-
spond to mode 6, we attempted to draw information from just
the standard packet header. These packets contain very little
information, as seen in Fig. 1. The second field in the header
is the version of the NTP protocol in use. The RFC does
not accurately describe how this field should be set, and we
found slight differences in the behavior among daemons. We
developed a novel fingerprinting technique for NTP daemons,
which uses these versions. This technique consists of sending
requests with all possible versions, 0 to 7. For each outgoing
request, the transmit timestamp was randomized. The response
packet will have this timestamp set as the origin timestamp,
which allows us to map incoming responses to our requests.

During this scan, we also collect the reference IDs of
incoming packets.

d) On rate-limits: The NTP project recommends enabling a
rate-limiting feature in ntpd [11], and these recommendations
are often the default in distributions of ntpd. The rate is not
configurable and not clearly defined in the sourcecode. When
a rate-limit is reached, the daemon may send a so-called Kiss-
o’-Death packet and drop packets until the rate is lowered, or
it may immediately start dropping packets. From our testing,

we found that a burst of 8 mode 3 requests was enough to hit
the rate-limit of ntpd.

e) Choice of tooling: ntpd is shipped with two CLI tools,
which can be used for sending mode 6 and 7 packets. ntpq is
used to send mode 6 packets and ntpdc is used to send mode
7 packets. However, because our methodology requires fine
control the send rate and packet contents, we developed our
own scanning tool, called ntpscan [12].

f) ntpscan: Our ntpscan [12] tool performs our three dif-
ferent scanning methods per peer in sequence and produces
various output files, which can be used for analysis.

To account for rate-limiting, it maintains two rate related
variables per target, the duration between sent packets (spread)
and the timeout duration for when a RATE Kiss-o’-Death is
received. Whenever a Kiss-o’-Death packet is received, these
variables are doubled to slow the rate down for that peer.

For our final scan, we configured ntpscan to use an initial
spread of 2 seconds. We found that with the latest FreeBSD
release of ntpd with recommended security settings a two-
second spread spread did not cause a Kiss-o’-Death packet to
be sent. Because some servers may not send a Kiss-o’-Death
packet before dropping packets, hitting rate-limits is prevented
as much as possible.

We configured ntpscan to retry every out-going packet at
least once. ntpscan has complicated logic surrounding rate-
limits, and might choose to send more packets at a slower
rate if it believes to have hit a rate-limit.
C. For performing the over-all scan and analysis (RQ3)

After we perform a preliminary enumeration scan, using the
methods of RQ1, and a follow-up scan, using the methods
of RQ2, we can perform analysis on the data. To aid in this
analysis, we used tcpdump to capture all traffic associated
with UDP port 123 while performing the second scan with
ntpscan [12]. We then used tshark and a variety of Ruby
scripts to extract additional information from the capture file.

V. Results

A. Preliminary scans

Fig. 2 shows the results of our different scans.
In total, we discovered 5,905,934 unique IPv4 addresses

responding to the NTP packets. The mode 1 packets got much
fewer responses than the mode 3 packets.

48,841 IPs were only discovered using mode 1 requests,
suggesting some servers may not respond to mode 3 packets
at all.

Due to the nature of this scan, it is impossible to tell if
a response is from an actual NTP server. For instance, we
found some servers which simply echo incoming port 123
UDP packets. Of the 5,905,934 IPs discovered in the prelim-
inary scan, our second tool ntpscan wasn’t able to get a valid
response from 802,256.

0 2 × 106 4 × 106
IPs responded

May 16 mode 3

May 16 mode 1

May 20 mode 3

May 20 mode 1

Total unique

5258736

400012

5458718

447530

5905934

Fig. 2: Preliminary scan results.

B. Version responses

In text, we make use of a presentation like 1->3 to mean
that a client (mode 3) packet with version 1 was responded
to with a server (mode 4) packet with version 3.

In tables, we use a column per version sent, and the cell
value is the version that was received. An empty cell indicates
that the server did not respond to that version.

In Table II, we tested our tool with 5 different daemons.
In Table III, we tested ntpscan against various servers

from known big tech companies.
It should be noted that this scan type is very sensitive to

rate-limits. For instance, a chronyd server might be misrep-
resented as fingerprint 1->1 3->3 4->4 if all version 2
requests and/or responses were dropped or lost. We discuss
this further in Section VI.

Table IV shows the most common fingerprints.
By far the most common fingerprint is the one shared by

chronyd and ntpsec.

TABLE II: Version responses of popular daemons

version response fingerprint

daemon v0 v1 v2 v3 v4 v5 v6 v7

ntpd 1 2 3 4 5 6 7

chronyd 1 2 3 4

ntpsec 1 2 3 4

ntpd-rs 3 4

openntpd 1 2 3 4 5 6 7

TABLE III: Version responses of servers by companies

version response fingerprint

company v0 v1 v2 v3 v4 v5 v6 v7

Microsoft 3 3 3 3

Apple 1 2 3 4 5 6 7

Google 1 2 3 4 5 6 7

Cloudflare 1 2 3 4

Amazon 1 2 3 4

Meta 1 2 3 4

TABLE IV: Top mode 3 version fingerprints

version response fingerprint

v0 v1 v2 v3 v4 v5 v6 v7 frequency

1 2 3 4 2777895

1 2 3 4 5 6 7 1502870

0 1 2 3 4 5 6 7 158995

0 1 2 3 4 58003

1 2 3 56050

3 3 3 3 3 3 3 3 39241

3 3 3 3 33154

3 4 32907

Aside from the common few fingerprints, we also discov-
ered a few less-common but distinct ones, like always
responding with 4: 0->4 1->4 2->4 3->4 4->4 5->4 6-
>4 7->4, which was seen 1289 times. Or mirroring the client
version except for versions beyond 4: 0->0 1->1 2->2 3-
>3 4->4 5->4 6->4 7->4, which was seen 1770 times.

We also discovered servers that only responded to one
version.
C. Reference IDs

Reference IDs in the NTP specification may be interpreted in
three different ways depending on the stratum field. Stratum
1 servers use a 4-byte ASCII string identifying the reference
clock. Servers with a higher stratum set the IPv4 address of
the reference server as the reference ID, when using IPv6,
they use the first 4 bytes of the MD5 digest of the IPv6
address. Stratum 0 packets are Kiss-o’-Death packets, and the
reference ID is an ASCII string denoting the error.

We will first cover the reference IDs found on stratum 1
servers. The most common ID was empty with 4 null-bytes.
The second was the ASCII string LOCL. See Fig. 3.

0
2500
5000
7500
10000
12500
15000
17500
20000
22500
25000

Frequency

null-bytes
LOCL

INIT
GOOG

GPS
127.127.127.1

127.0.0.1
ACTS

EXT
PPS

A
SC

II
 R

ef
er

en
ce

 I
D

27380
17238

7172
3683

2778
1802

981
584
552
479

Fig. 3: Top few ASCII identifiers of stratum 1 servers

Internally, NTP uses addresses starting with octets 127.127
to refer to different local reference clocks.

Drivers have addresses in the form 127.127.t.u, where t
is the driver type and u is a unit number in the range
0-3 to distinguish multiple instances of the same driver.

— NTP Reference Clock Support [13]

However, 127.127.127.1 isn’t known to correspond to
any specific driver.

Because so many stratum 0 servers responded with GOOG
as the identifier, we decided to investigate these further, and
found that 3504 of the 3683 discovered servers are from just
35 prefixes, nearly all of which start with octet 103. These
prefixes and additional comments are listed in Appendix B.

For servers that are not stratum 1, the reference ID is either the
IPv4 address of the reference server, or the first four octets of
the MD5 hash of the IPv6 address. We do not have a method
for differentiating between the two, so we interpreted all as
IPv4 addresses. Fig. 4 shows the most common reference IDs
for servers beyond stratum 1.

0
25000
50000
75000
100000
125000
150000
175000
200000
225000

frequency

null-bytes
127.127.1.0

200.33.150.30
10.44.32.14

61.130.120.25
153.96.1.45

216.239.35.0
77.223.114.123
200.20.186.75

203.248.240.140
81.113.102.43

127.127.1.1

IP
v4

 R
ef

er
en

ce
 I

D

225948
139106

40067
36884
34958
33007
32853
29684
29412
28878
27293
23308

Fig. 4: Top few IPv4 reference identifiers for non-stratum-1 servers

Omitted from these results are servers which responded with
stratum 0. These packets should be Kiss-o’-Death packets, but
we have found some servers sending stratum 0 packets with
common identifiers like 127.0.0.1 and INIT. This may
indicate that these servers are wrongly setting the stratum field
to 0.

The reference ID that is default on an uninitialized ntpd-rs
daemon, XNON, was not discovered once.

A more complete list of reference IDs of stratum 1 servers
can be found in Appendix A.
D. Strata

The most common stratum used was 3. Fig. 5 shows the
frequencies of the ten most common strata.
E. Variables responses

We discovered 1,111,566 servers that responded to the mode
6 read variables command. The scanner omitted responses
from 1280 servers because they could not be converted to
ASCII.

a) Variable system: The system variable contains the
name of the operating system. We slightly altered the data

0
200000
400000
600000
800000
1000000
1200000
1400000
1600000

frequency

stratum 1
stratum 2
stratum 3
stratum 4
stratum 5
stratum 6

stratum 11

St
ra

tu
m

64365
1104371

1732748
805702

377258
99125
111409

Fig. 5: Frequency of top 10 strata

by removing version and architecture information as well as
the common UNIX/ prefix. Table V shows the most common
operating systems, a complete list is in Appendix D.

TABLE V: most common operating systems

operating system frequency

UNIX 798692

cisco 95595

Linux 65676

/ 62234

FreeBSD 50807

JUNOS 21925

b) Variable version: The version variable contains the
version of the daemon. The most common versions are shown
in Table VI. In the case of ntpd and ntpsec versions, we
truncated them to just the first 3 digits (x.y.z). The complete
list is in Appendix E.

TABLE VI: most common daemon versions

daemon version frequency

4 798586

ntpd 4.2.8 80451

ntpd 4.2.0 44281

ntpd 4.1.1 6287

ntpd 4.2.6 5409

ntpd 4.2.4 2419

c) Variable processor: The processor variable contains the
architecture of the server. All architectures with more than a
1000 occurrences are listed in Table VII, the complete list is
in Appendix F.

TABLE VII: most common architectures

architecture frequency

unknown 798731

amd64 47286

armv7l 37251

mips 10302

x86_64 9670

powerpc 8212

octeon 7912

i386 6173

arm 2379

aarch64 2324

ppc 2313

mips64 1417

d) Other variables: We found a number of unusual variable
identifiers. We found 33 servers with a variable called
LANTIME, for example LANTIME=LANTIME/GPS170/
M600/V7.08.024/SN030111. These are likely instances
of Meinberg LANTIME servers. We also found 7 servers
using the variable host.

Furthermore, we found 118 servers with corrupted variable
identifiers. This is an example of a corrupted response:
3="4", 3-926154393-926154393="unknown",
926154393="UNIX", leap=0,
4491979-stratum=3, precision=-24,
Additionally, we found 34,723 servers that add a single
null-byte after their refid value. We found that both
the servers with corrupted responses and servers with
the null-byte all share the variables version="4",
processor="unknown", system="UNIX" (when not
corrupted) and the version fingerprint 1->1 2->2 3->3 4-
>4.

e) Response size: We measured the sizes of the readvars
responses and compiled the histogram in Fig. 6.

0 100
200
300
400
500
600
700
800
900
1000

response size in bytes

0
40000
80000
120000
160000
200000
240000
280000
320000
360000

fr
eq

ue
nc

y

Fig. 6: Histogram of readvars response sizes

0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

response size in bytes

0
300
600
900
1200
1500
1800
2100
2400
2700
3000

fr
eq

ue
nc

y

Fig. 7: Histogram of monlist response sizes

F. Monlist responses

We discovered 6617 servers that responded to monlist requests
without errors.

Many responses were small, below 500 bytes. However,
the most common response size we saw was 16,080 bytes,
which we saw 2116 times. Given that the request is only 50
bytes, this is an amplification factor of ~321. We also notably
received 252 responses of 32,160 bytes, and 74 responses of
48,800 bytes.

Table VIII shows the implementation code and opcode
used by the responses. Some servers respond to both the
old implementation code (IMPL_XNTPD_OLD) and the new
implementation code (IMPL_XNTPD), in which case we used
to biggest response.

TABLE VIII: Implementation code and opcode of monlist responses

implementation code opcode frequency

IMPL_XNTPD_OLD REQ_MON_GETLIST 4899

IMPL_XNTPD_OLD REQ_MON_GETLIST_1 149

IMPL_XNTPD REQ_MON_GETLIST 1345

IMPL_XNTPD REQ_MON_GETLIST_1 224

We’ve seen many servers where existing tools like nmap
with the ntp-monlist.nse script and the latest version
of ntpdc both weren’t able to get a monlist response, but our
custom tool was. This is because ntpdc sends a request with
opcode 42 (REQ_MON_GETLIST_1 and only attempts
other versions of the protocol after an error is received, but
does nothing on a timeout. nmap’s ntp-monlist.nse
script simply doesn’t try other versions of the protocol. Our
tool always sends a request with all possible codes uncondi-
tionally, which yields more results when daemon’s do not
respond to code 42 at all. Additionally, ntpdc has had a bug
since at least 2004, which causes it to report a timeout with
large responses. [14]

We found 1118 servers that responded to both monlist and
readvars. This allowed us to construct Table IX.

TABLE IX: ntpd versions of monlist enabled servers

version frequency

ntpd 4.2.6 914

ntpd 4.2.0 90

ntpd 4.2.4 62

ntpd 4.2.2 29

ntpd 4.2.8 11

ntpd 4.2.5 10

ntpd 4.2.1 1

G. Servers acting as a proxy

We found a number of servers that reply with a different
source-IP than what they were probed with. Using the ran-
domized transmit timestamps from our fingerprint scan to pair
mode 3 requests with mode 4 responses, we discovered 2151
servers that reply under a different source-IP.
H. Use of timestamps

During our analysis, we found a number of interesting behav-
iors regarding how servers set the timestamps in their mode
4 responses.

We saw 29,892 servers that set the Origin Timestamp to
the same value of as their Transmit Timestamp, instead of
using the Transmit Timestamp from the mode 3 packet. This
behavior corresponds to earlier versions of the SNTP speci-
fication (RFC 4330) and interferes with our fingerprinting
method because our randomized transmit timestamp is not
reflected back.

We saw 3013 servers that round the Origin Timestamp
to the nearest second, which also interferes with our finger-
printing method, but could be accounted for in future scans.

We saw 1,184,304 servers that set the Receive Timestamp
to that of the Origin Timestamp.
I. Kiss-o’-Death RATE packets

We found only 38 servers that responded with Kiss-o’-Death
RATE packets (signalling a rate-limit has been hit). This
means that our default spread of 2 seconds between packets
is likely sufficient.

VI. Discussion

Scanning for UDP services is difficult, as it is hard to detect
when a packet is dropped. During our scan, we monitored for
dropped packets on the host machine, but did not do so for
upstream devices like firewalls and routers. We have found
that intensive scans like these can easily reach a machine’s
max tracked connection count. Because of this, we think it
may be a good idea to perform a slower preliminary scan, as
well as having more monitoring set-up. A slower scan might
also produce better scan results because there is less chance
of triggering a remote firewall.

Aside from hitting firewalls, the importance of not hitting
the daemon’s rate-limit should also be stressed. We have found
that many daemons are configured to not send Kiss-o’-Death

packets. Without these packets, it is impossible to determine
if a packet was dropped on purpose. When an undetected rate-
limit has occurred, it will skew the version scan results. This
is often recognizable by an impossible version fingerprint. We
tried our best to tune the scanner for a proper balance of speed
and accuracy.

We saw that the scan results were fairly volatile, which
means it is important to minimize the time between the
preliminary scan and the second in-depth scan. Our time dif-
ference of over a month between the scans may have degraded
our results. Our tool and methodology also didn’t allow us to
check for false positives from the preliminary scan, as ntpscan
just reports servers as offline when no valid packet is received.
The preliminary scan did not differentiate between actual NTP
servers responses and other UDP responses. For instance, we
found a number of servers which just echo incoming packets.

We also think the monlist scanning ability of our
custom scanner could be improved. We only received
empty responses to the pre-ipv6 protocol implementation
(IMPL_XNTPD_OLD), which could mean that our tool does
not send proper requests for that protocol. As that version
has no support for error codes, it is harder to work with.
There’s also no documentation for the either mode 7 imple-
mentation, so we worked solely by reviewing the ntpdc and
ntpd sourecode and reverse engineering packets. We believe
it might be possible to find more monlist enabled servers
by properly trying all 4 combinations of implementation and
request codes.

Our fingerprinting method relies on sending a randomized
transmit timestamp to pair responses packets to their requests.
However, we found cases where a server does not directly
copy the transmit timestamp to the origin timestamp of the
response packet, as shown in Section V.H.

There are a number of things we did not test for, but for
which we think data might be interesting. For instance, we
did not try modes other than 3, 6 and 7. We also did not try
commands other than readvars and monlist in modes 6 and
7. We believe there might be cases of broken authentication
for mode 6, which could allow an attacker to set variables
or use the mrulist command, which replaced monlist. For
fingerprinting, it might also be interesting to send types of
invalid packets, like using mode 0 or sending the wrong
packet size. We did manually analyze the behavior of how
timestamps are set by servers in Section V.H and in the future
we would like to incorporate this analysis into ntpscan and
draw comparisons with the version fingerprint.

We would also like to see more research done into servers
that appear to be proxy-ing other servers.

VII. Conclusion

To answer RQ1, we believe to have found a reliable way of
discovering NTP servers using zmap. We nearly had 6 million
results, although this did include some false positives. Other
methods may result in less false positives, like using nmap,
of which the service/version scan has the ability to parse
incoming packets.

For RQ2, we believe that especially the readvars command
is of value when gathering information from an NTP server,
as it is an immediate means of gathering valuable information
while only sending a single packet, and we were surprised to
see nearly 22% of daemons respond to it. For servers that do
not respond to this command, we believe our fingerprinting
method using the version in mode 3 packets to be useful.
However, when using fingerprinting methods that rely on the
presence of certain responses, extreme care should be taken
not to invoke the rate-limits of the daemon.

For finding monlist enabled servers, we already found our
custom tool to yield more results than ntpdc, in at least some
areas. Yet ntpscan’s ability to scan for monlist enabled servers
is still incomplete, as it does not properly implement the pre-
ipv6 implementation of mode 7. We think there might be even
more monlist servers that have gone undetected.

To answer RQ3, we found the vast majority of servers to
have very similar characteristics. However, overall, we found a
great variety different operating systems, daemon versions and
architectures. Many of the characteristics we found correspond
to routers, firewalls and other network infrastructure.

Due to the number of NTP servers with monlist support and
their response sizes, we believe DDoS amplification through
NTP is likely still viable. We found many monlist enabled
servers to be from just a few AS numbers, and we hope that
by contacting these hosts we could further reduce the number
of public monlist enabled servers.

References

[1] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey,
and M. Karir, “Taming the 800 Pound Gorilla: The Rise and Decline
of NTP DDoS Attacks,” in Proceedings of the 2014 Conference
on Internet Measurement Conference, in IMC '14. Vancouver, BC,
Canada: Association for Computing Machinery, 2014, pp. 435–448.
doi: 10.1145/2663716.2663717.

[2] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Exit from hell?
reducing the impact of amplification DDoS attacks,” in Proceedings of
the 23rd USENIX Conference on Security Symposium, in SEC'14. San
Diego, CA: USENIX Association, 2014, pp. 111–125.

[3] D. Kopp, C. Dietzel, and O. Hohlfeld, “DDoS Never Dies? An IXP
Perspective on DDoS Amplification Attacks,” in Passive and Active
Measurement, O. Hohlfeld, A. Lutu, and D. Levin, Eds., Cham: Springer
International Publishing, 2021, pp. 284–301.

[4] Accessed: Jun. 19, 2025. [Online]. Available: https://www.ntp.org/
documentation/4.2.8-series/ntpdc/

[5] Matthew Prince, Accessed: Apr. 25, 2025. [Online]. Avail-
able: https://blog.cloudflare.com/technical-details-behind-a-400gbps-
ntp-amplification-ddos-attack/

[6] L. Rudman and B. Irwin, “Characterization and analysis of NTP ampli-
fication based DDoS attacks,” in 2015 Information Security for South
Africa (ISSA), 2015, pp. 1–5. doi: 10.1109/ISSA.2015.7335069.

[7] T. Rytilahti, D. Tatang, J. Köpper, and T. Holz, “Masters of Time: An
Overview of the NTP Ecosystem,” in 2018 IEEE European Symposium
on Security and Privacy (EuroS&P), 2018, pp. 122–136. doi: 10.1109/
EuroSP.2018.00017.

[8] J. Krupp, M. Karami, C. Rossow, D. McCoy, and M. Backes, “Linking
Amplification DDoS Attacks to Booter Services,” in Research in At-
tacks, Intrusions, and Defenses, M. Dacier, M. Bailey, M. Polychronakis,
and M. Antonakakis, Eds., Cham: Springer International Publishing,
2017, pp. 427–449.

[9] N. Minar, “A Survey of the NTP Network,” 1999. [Online]. Available:
https://api.semanticscholar.org/CorpusID:17133789

[10] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide scanning and its security applications,” in 22nd USENIX Security
Symposium, 2013.

[11] NTP Project, [Online]. Available: https://support.ntp.org/Support/
AccessRestrictions

[12] Rein Fernhout, [Online]. Available: https://github.com/LevitatingBusi
nessMan/ntpscan

[13] Dave Mills, [Online]. Available: https://www.eecis.udel.edu/~mills/ntp/
html/refclock.html

[14] NTP Project, [Online]. Available: https://bugs.ntp.org/show_bug.cgi?
id=286

https://doi.org/10.1145/2663716.2663717
https://www.ntp.org/documentation/4.2.8-series/ntpdc/
https://www.ntp.org/documentation/4.2.8-series/ntpdc/
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
https://doi.org/10.1109/ISSA.2015.7335069
https://doi.org/10.1109/EuroSP.2018.00017
https://doi.org/10.1109/EuroSP.2018.00017
https://api.semanticscholar.org/CorpusID:17133789
https://support.ntp.org/Support/AccessRestrictions
https://support.ntp.org/Support/AccessRestrictions
https://github.com/LevitatingBusinessMan/ntpscan
https://github.com/LevitatingBusinessMan/ntpscan
https://www.eecis.udel.edu/~mills/ntp/html/refclock.html
https://www.eecis.udel.edu/~mills/ntp/html/refclock.html
https://bugs.ntp.org/show_bug.cgi?id=286
https://bugs.ntp.org/show_bug.cgi?id=286

Appendix A: ASCII Reference IDs

The following table consists of all reference IDs report by
stratum 1 servers which occurred more than once.

In cases where the string is not valid ASCII, we either
converted the string to an IP in range 127.0.0.1/8 or displayed
the hexadecimal value instead.
Reference ID frequency
0x00000000 27380

LOCL 17238

INIT 7172

GOOG 3683

GPS 2778

127.127.127.1 1802

127.0.0.1 981

ACTS 584

EXT 552

PPS 479

PTP 211

VMTP 207

GNSS 171

NICT 125

MRS 92

PTP0 51

PHC0 47

NIST 38

GPSs 33

DCF 28

MBGh 23

PPS0 22

MBS 21

IRIG 20

 SPG 18

MX7 17

GSL 17

ATOM 15

SEL_ 14

PZF 14

CTD 14

0xd05b703c 13

BD 13

DCFa 12

Reference ID frequency
127.127.1.1 12

WAAS 11

127.127.1.0 11

oa 9

kPPS 9

PPS 8

FREQ 7

GLN 7

GPGL 7

LOCA 7

GPPS 7

pps 7

LCL 7

NMEA 6

BDS 6

SHM 6

TSTR 6

IRG0 6

0x00001251 5

DCFs 5

TC 5

 GPS 5

OJJY 4

BBgp 4

MBG 4

PSM0 4

OLEG 4

0xa625da5a 4

PTP 4

0xa9fea97a 4

DTS 4

CABL 4

0x00000001 3

TMNL 3

PHC 3

LCOL 3

0xc057ad48 3

GPS0 3

C 3

Reference ID frequency
GMR 3

0xa6258257 3

ONBR 3

KPPS 2

PZFs 2

HARD 2

T.C. 2

FREE 2

SOCK 2

ROA 2

GPS1 2

PTPs 2

ANT2 2

MSF 2

127.127.7.1 2

XFAK 2

NOVL 2

ANT1 2

SH0 2

GAL 2

GPSD 2

G+BD 2

GNSs 2

GPS<space> 2

Appendix B: GOOG responses

The following list is all \24 prefixes of which 10 or more
IPs responded with a stratum 1 GOOG response. According to
whois records, all of them are registered in Bangladesh.

103.112.204.0\24 (119)
103.112.206.0\24 (17)
103.112.207.0\24 (51)
103.122.74.0\24 (16)
103.126.149.0\24 (17)
103.12.74.0\24 (32)
103.13.193.0\24 (12)
103.137.66.0\24 (32)
103.137.67.0\24 (29)
103.142.184.0\24 (23)
103.143.182.0\24 (256)
103.143.183.0\24 (256)
103.146.16.0\24 (84)
103.146.17.0\24 (158)
103.150.255.0\24 (16)
103.155.52.0\24 (167)

103.155.53.0\24 (112)
103.159.254.0\24 (16)
103.167.190.0\24 (256)
103.167.191.0\24 (256)
103.174.23.0\24 (40)
103.178.188.0\24 (256)
103.229.255.0\24 (42)
103.55.242.0\24 (256)
103.55.243.0\24 (256)
103.58.74.0\24 (24)
103.58.75.0\24 (18)
103.75.138.0\24 (256)
180.94.28.0\24 (28)
180.94.29.0\24 (256)
203.76.220.0\24 (53)
203.76.221.0\24 (28)
203.76.222.0\24 (40)
203.76.223.0\24 (12)

It should be noted that we did not only receive stratum 1
GOOG packets from these prefixes. They were also found to
contain many servers configured as stratum 3 or higher.

Appendix C: Common version fingerprints

The following table contains all fingerprints that appeared
more than a 1000 times.

version response fingerprint

v0 v1 v2 v3 v4 v5 v6 v7 frequency

1 2 3 4 2777895

1 2 3 4 5 6 7 1502870

0 1 2 3 4 5 6 7 158995

0 1 2 3 4 58003

1 2 3 56050

3 3 3 3 3 3 3 3 39241

3 3 3 3 33154

3 4 32907

2 3 4 31945

1 2 4 31791

1 3 4 30825

1 2 3 4 5 6 16551

1 2 3 4 5 7 14836

1 2 3 3 3 3 3 14729

1 2 3 4 6 7 14391

2 3 4 5 6 7 14194

1 2 3 5 6 7 14188

1 2 4 5 6 7 13897

1 3 4 5 6 7 13539

1 2 8595

1 3 7729

2 3 7453

version response fingerprint

v0 v1 v2 v3 v4 v5 v6 v7 frequency

1 4 7050

2 4 6473

3 3 3 6144

1 4466

3 4164

4 4063

2 4022

1 2 3 4 5 3543

1 2 3 4 6 2822

1 2 3 4 7 2730

1 2 3 6 7 2586

1 2 3 5 6 2559

0 1 2 3 4 5 6 2493

1 2 3 5 7 2479

1 2 5 6 7 2428

0 1 2 3 4 5 7 2381

1 4 5 6 7 2353

1 2 4 6 7 2345

1 2 4 5 6 2344

1 2 4 5 7 2339

0 1 2 3 4 6 7 2322

1 3 4 5 6 2268

1 3 5 6 7 2264

0 1 2 4 5 6 7 2240

3 3 3 3 3 3 3 2187

1 3 4 6 7 2185

0 1 2 3 5 6 7 2184

2 3 4 5 6 2182

3 4 5 6 7 2177

2 3 5 6 7 2176

2 4 5 6 7 2173

0 1 3 4 5 6 7 2159

3 3 3 3 3 3 3 3 2143

1 3 4 5 7 2138

3 3 3 3 3 3 3 2131

0 2 3 4 5 6 7 2106

2 3 4 6 7 2066

2 3 4 5 7 2065

3 3 3 3 3 3 3 2050

3 3 3 3 3 3 3 1919

3 3 3 3 3 3 3 1915

version response fingerprint

v0 v1 v2 v3 v4 v5 v6 v7 frequency

3 3 3 3 3 3 3 1891

3 3 3 3 3 3 3 1829

0 1 2 3 4 4 4 4 1770

4 4 4 4 4 4 4 4 1289

1 2 3 6 1031

1 2 3 5 1016

Appendix D: System variable responses

operating system frequency

UNIX 798692

cisco 95595

Linux 65676

/ 62234

FreeBSD 25415

FreeBSDJNPR 25392

JUNOS 21925

SunOS 351

vxworks 302

QNX 179

VMkernel 120

AIX 100

Windows 87

NetBSD 79

Isilon OneFS 32

eCos 56

HPUX 33

Data ONTAP 17

Darwin 12

unknown 11

Chiaros 9

SecureOS 9

BRIX 9

LeoNTP 7

OpenVMS 5

WINDOWS/NT 5

EqualLogic (R) storage array 2

HongmengOS 2

BSD/OS 2

SCO 2

DECOSF1 2

NOS 1

operating system frequency

IRIX 1

Win2003 1

Unixware2 1

Solaris 1

GBOS 1

Moscad ACE 1

IPSO 1

NetWare 1

uClinux 1

Appendix E: Daemon versions

version frequency

4 798586

ntpd 4.2.8 80451

ntpd 4.2.0 44281

ntpd 4.1.1 6287

ntpd 4.2.6 5409

ntpd 4.2.4 2419

ntpd 4.1.0 527

ntpd 4.2.7 373

ntpd 4.3.99 343

ntpd 4.3.105 272

ntpd 4.2.2 154

ntpd 4.1.2 26

ntpd 4.2.5 17

ntpd 4.2.1 12

unknown 11

2 9

ntpd 4.0.99 6

Wangjing NTP 1.0 5

ntpd 4.1.72 4

ntpd ntpsec-1.1.3 8

ntpd ntpsec-1.2.2 3

ntpd ntpsec-1.1.0 3

ntpd 4.3.93 2

Domain 1

Appendix F: Architectures

architecture frequency

unknown 798731

amd64 47286

architecture frequency

armv7l 37251

mips 10302

x86_64 9670

powerpc 8212

octeon 7912

i386 6173

arm 2379

aarch64 2324

ppc 2313

mips64 1417

arm64 786

i686 673

armv5tejl 579

armv3b 412

UltraSparc-IIe 300

armv7b 254

armv6l 223

armv5tel 189

Titan-AM335X 123

aarch64_be 86

x86 80

xlr 65

i586 46

sun4v 41

Tridium_NPM-6xx_Board 29

i86pc 27

kppc 24

sbmips 22

sh4 17

Power Macintosh 12

PowerPC 10

i486 9

armv4tl 9

armv4l 9

blackfin 8

se100 8

sun4u 7

ARMv7E-M 7

x86-SSE2 6

AM335X 5

OHSYS3 5

Tridium_NPM3xx_Board 5

architecture frequency

Jace_PPC_405 5

Tridium_Jace7xx_Board 4

seil4 2

x64 2

Working 2

00FBFA5F4B00 2

armv5teb 2

m68k 1

Tankvision_NXA8x 1

s390x 1

AT91SAM9260 1

00F9C1964C00 1

seil3 1

00FA74164C00 1

Sabre_SDB-Freescale_i.MX6_SoloX_Sabre_SDB 1

armv3l 1

Honeywell_IPC-QNX7_on_i.MX6_SoloX 1

x86pc 1

8540ADS 1

Edge10 1

Infinera-AMM 1

m68knommu 1

evbarm 1

	Introduction
	Research Question 1
	Research Question 2
	Research Question 3

	Background
	Network Time Protocol
	DDoS Amplification using NTP

	Related works
	Methods
	For reliably identifying NTP servers (RQ1)
	For gathering useful information from an NTP server (RQ2)
	Mode 6 readvars
	Mode 7 monlist
	Mode 3 version responses
	On rate-limits
	Choice of tooling
	ntpscan

	For performing the over-all scan and analysis (RQ3)

	Results
	Preliminary scans
	Version responses
	Reference IDs
	Strata
	Variables responses
	Variable system
	Variable version
	Variable processor
	Other variables
	Response size

	Monlist responses
	Servers acting as a proxy
	Use of timestamps
	Kiss-o'-Death RATE packets

	Discussion
	Conclusion
	References
	ASCII Reference IDs
	GOOG responses
	Common version fingerprints
	System variable responses
	Daemon versions
	Architectures

