Charting the Temporal TopologKI: Enumerating the
e

Global NTP Server

twork

Rein Fernhout
Design and Analysis of Communication Systems
University of Twente
Enschede, Netherlands
r.p.j.fernhout @student.utwente.nl

Abstract—Network Time Protocol (NTP) servers play a criti-
cal role in maintaining synchronized time across the internet,
enabling accurate timekeeping for a wide range of applications
and services. In the early 2010s, NTP servers were abused in
DDoS attacks through the use of diagnostic commands, such as
monlist [1]. Much effort has been put into eliminating this kind
of abuse, so that the usage of NTP in DDoS has declined [2].
However, some abuse remains prevalent today [3], while research
into the network has stagnated. In this work, we do a current,
global analysis of NTP servers on the IPv4 address space. We
do so by developing a two-phase scanning technique, utilizing
both ZMap and a custom tool called ntpscan. In our analysis we
use reported characteristics of NTP servers like the reference
ID and stratum, as well as a novel NTP daemon fingerprinting
technique based on the version field in response packets. Using
these methods we’ve detected over 5 million active NTP servers.
We show that these servers report a wide range of operating
systems, architectures, daemon versions and clock sources. We
found 6617 servers with the monlist command enabled and
measured their response sizes.

Index Terms—Network Time Protocol, Network Enumeration,
DDOS Amplification, Network Survey

I. INTRODUCTION

The Network Time Protocol (NTP) is a networking protocol
designed to synchronize the clocks of computers over a
network.

The protocol attracted significant research attention in the
2010s, following its exploitation in large-scale DDoS ampli-
fication attacks.

However, while academic research into the network has
stagnated in recent years, the NTP ecosystem itself has
remained dynamic, with growing interest in the development
and adoption of new server implementations like chronyd,
ntpsec, and ntpd-rs.

We want to provide insight into the current state of the
network. We are interested in the amount of NTP servers
that are publicly accessible, their software versions and their
behavioral characteristics.

Additionally, we are interested in the ability of the current
network to still be used for DDoS amplification. In 2021, NTP
was reportedly still commonly used in DDoS attacks [3]. The
prevalence of these attacks suggests there may still be some
vulnerable servers on the internet today.

In this paper, we show our methods for doing a global
survey of the NTP network. This methodology combines the
existing tool ZMap with the development of a custom NTP

analysis tool called ntpscan. We additionally experiment with
novel ways of classifying NTP servers based on their behavior.

To tackle this problem, we propose a number of research
questions (RQ).

A. Research Question 1
How can we reliably discover an NTP server?
B. Research Question 2

How can we gather descriptive information from an NTP
server?

C. Research Question 3

Using the methods from RQ1 and RQ2, what are the charac-
teristics of discoverable NTP servers?

II. BACKGROUND

A. Network Time Protocol

The Network Time Protocol is a protocol operating on UDP
for synchronizing time across a network. It allows for a
distributed network of reference servers, layered in strata, to
serve accurate time from source clocks, like radio sources
and GPS satellites, to clients over the internet. The following
section will briefly explain some parts of the protocol that are
relevant to our work.

In NTP, packets have a so-called Association Mode. In
typical client-server interaction, the client will send mode
3 (client) packets, while the servers sends mode 4 (server)
packets. The available modes are shown in Table 1.

TABLE I: AssociATioN MODEs

value meaning
0 reserved
1 symmetric active
2 symmetric passive
3 client
4 server
5 broadcast
6 NTP control message
7 reserved for private use

mailto:r.p.j.fernhout@student.utwente.nl

Mode 6 (NTP control message) allows reading and potentially
setting certain variables on a server. Mode 7 (private use) may
be used by a daemon to extend the protocol. A typical client/
server interaction uses mode 3 and 4 and the packet header
shown in Fig. 1.

Transmit Timestamp (time at sending party when packet departed)

Fig. 1: NTP Packet Header Format

The NTP Project has a reference implementation for NTP
called ntpd. Though it has also been called xntpd, we will
refer to it as ntpd. We will use the term daemon to refer
to arbitrary NTP server software, and we will use the term
server to refer to a host that is serving NTP.

B. DDoS Amplification using NTP

UDP DDoS amplification is a technique where an attacker
uses a public server running a UDP-based protocol to amplify
a DDoS attack. This is done by finding a service (the ampli-
fier) that can be made to respond with more data than it
receives. Once such an amplifier is identified, the attacker
sends UDP packets to the service with a spoofed source-IP
of the victim.

NTP specifies a mode 6 command called read variables,
which returns a large list of values about the server. Addi-
tionally, the reference implementation ntpd used to support a
monitoring command called monlist, which returns the IPs of
the last 600 peers [4]. monlist is not referenced in any RFC
because it was implemented using mode 7 (private use). Both
of these commands, though particularly the latter, can be used
for DDoS amplification.

At the end of 2013, attackers started using these two
NTP commands (especially monlist) as DDoS amplifiers. This
quickly escalated, and the first quarter of 2014 would see 85%
of DDoS attacks over 100Gbps use NTP [1].

Part of those attacks was a record-breaking 400Gbps attack
on a Cloudflare (a DDOS mitigation service) client. This
attack was big enough to cause network congestion in parts
of Europe [5].

During this period, multiple researchers scanned the inter-
net continuously for NTP amplifying servers [1], [2], [6],
[7]. A campaign was started to reduce NTP amplifiers on
the internet, which resulted in nearly 92% of NTP monlist
amplifiers to be shut down within 13 weeks [2].

As a result of these efforts, many servers stopped respond-
ing to monlist request packets. However, even to this day,
DDoS amplification attacks through NTP are still common
[3], [8]. This suggests that there are still servers on the internet
with the monlist or read variables commands enabled.

III. RELATED WORKS

In 1999, an attempt was made to survey the entire NTP
network [9]. However, the method used was walking the
network graph, instead of scanning the entire address range.
This was done by asking hosts for their peer list and monitor
list, using the private mode peers and monlist commands, and
then visiting the resulting hosts with a spider program.
Kiihrer et al (2014) tracked NTP amplifiers from the end of
2013 to the end of 2016, as part of a large-scale campaign
to notify administrators of the amplification problems in NTP
[2]. Their data shows that the campaign caused nearly 95%
of NTP amplifiers to be shut down in just six months.

In the same period, openntpproject.org (ONP) also scanned
for NTP servers that respond to monlist. The scan was
performed using the ntpdc tool shipped with the reference
implementation.

Czyz et al (2014) also scanned NTP servers around this time.
They drew comparisons between their data set and those of
Kiihrer and ONP [1].

Rudman (2015) scanned NTP DDoS related traffic in South-
Africa in the same period. They specifically focused on the
TTL values of NTP DDoS traffic [6].

Because Kiihrer et al (2014) only sent mode 6 readvars
and mode 7 monlist commands, Rytilahti et al (2018) later
complemented the data with two additional scans, which also
included a generic mode 3 client request [7]. In the same
paper, they also constantly requested time at public time
services via DNS. They used the NTP pool, the ntp.org server
list and servers from major vendors, like Google or Apple.
They then tracked what IP addresses the domains resolved to.

IV. METHODS

We decided to split our survey into two scans. First, we do a
preliminary scan, with the sole purpose of listing all public
NTP servers on the IPv4 address space. We then perform a
second scan, which attempts to extract information from the
servers found in the preliminary scan.

A. For reliably identifying NTP servers (RQI)

Because NTP operates on UDP, discovery is trickier than with
TCP services. The only way to verify that a server offers NTP
is to send a valid NTP request and receive a response. A few
existing tools can be used to probe UDP services. We decided
to utilize zmap [10].

For the payload, we looked at another scanning tool called
nmap, which is shipped with two NTP related probes found in
its nmap-service-probes file, which nmap uses during
its service/version scan. These probes are a mode 3 client
request and a mode 1 symmetric active request. We extracted

these probes for use with zmap. zmap was locally compiled
from the master branch, commit 5ee08£4.

We chose zmap for its efficiency and ability to maintain
a constant send rate. Our scan was performed at a rate of
100Mbps for a duration of 8 hours.

We used the default zmap blocklist, along with an additional
blocklist provided by the university. This scan provided us
with a long list of IPs that returned a response to one of
the probes.

B. For gathering useful information from an NTP server
(RQ2)

We developed a scanning routine that contains three parts.
The type of packets we sent are mode 6 readvars, mode 7
monlist and mode 3 client packets.

a) Mode 6 readvars: The most obvious method of getting
information from an NTP server is via the mode 6 read vari-
ables (also referred to as readvars) command. This command
can be used to retrieve a set of variables from the daemon,
including information like the daemon name and version,
reference ID as an ASCII string, operating system and archi-
tecture.

However, not all daemons allow public access of this
command.

b) Mode 7 monlist: The NTP specification has a mode
reserved for private use. Ever since the first versions of xnipd,
this was used as a way to add additional monitoring capabil-
ities. The functionality of this command is now embedded in
the mode 6 mrulist command. The mode 7 implementation
in ntpd has slightly changed during its lifetime. Specifically,
there is a pre-ipv6 and a post-ipv6 version, which use
different implementation codes, namely IMPL_XNTPD and
IMPL_XNTP_OLD. Additionally, there are two opcodes for
monlist commands, REQ_MONLIST and REQ_MONLIST_1.
During our scan, we tried all four combinations of implemen-
tation codes and opcodes.

¢) Mode 3 version responses: Because not all servers re-
spond to mode 6, we attempted to draw information from just
the standard packet header. These packets contain very little
information, as seen in Fig. 1. The second field in the header
is the version of the NTP protocol in use. The RFC does
not accurately describe how this field should be set, and we
found slight differences in the behavior among daemons. We
developed a novel fingerprinting technique for NTP daemons,
which uses these versions. This technique consists of sending
requests with all possible versions, O to 7. For each outgoing
request, the transmit timestamp was randomized. The response
packet will have this timestamp set as the origin timestamp,
which allows us to map incoming responses to our requests.

During this scan, we also collect the reference IDs of
incoming packets.

d) On rate-limits: The NTP project recommends enabling a
rate-limiting feature in ntpd [11], and these recommendations
are often the default in distributions of ntpd. The rate is not
configurable and not clearly defined in the sourcecode. When
a rate-limit is reached, the daemon may send a so-called Kiss-
o’-Death packet and drop packets until the rate is lowered, or
it may immediately start dropping packets. From our testing,

we found that a burst of 8 mode 3 requests was enough to hit
the rate-limit of nipd.

e) Choice of tooling: ntpd is shipped with two CLI tools,
which can be used for sending mode 6 and 7 packets. ntpq is
used to send mode 6 packets and ntpdc is used to send mode
7 packets. However, because our methodology requires fine
control the send rate and packet contents, we developed our
own scanning tool, called ntpscan [12].

f) ntpscan: Our ntpscan [12] tool performs our three dif-
ferent scanning methods per peer in sequence and produces
various output files, which can be used for analysis.

To account for rate-limiting, it maintains two rate related
variables per target, the duration between sent packets (spread)
and the timeout duration for when a RATE Kiss-0’-Death is
received. Whenever a Kiss-o’-Death packet is received, these
variables are doubled to slow the rate down for that peer.

For our final scan, we configured ntpscan to use an initial
spread of 2 seconds. We found that with the latest FreeBSD
release of ntpd with recommended security settings a two-
second spread spread did not cause a Kiss-o’-Death packet to
be sent. Because some servers may not send a Kiss-o’-Death
packet before dropping packets, hitting rate-limits is prevented
as much as possible.

We configured ntpscan to retry every out-going packet at
least once. ntpscan has complicated logic surrounding rate-
limits, and might choose to send more packets at a slower
rate if it believes to have hit a rate-limit.

C. For performing the over-all scan and analysis (RQ3)

After we perform a preliminary enumeration scan, using the
methods of RQ1, and a follow-up scan, using the methods
of RQ2, we can perform analysis on the data. To aid in this
analysis, we used fcpdump to capture all traffic associated
with UDP port 123 while performing the second scan with
ntpscan [12]. We then used tshark and a variety of Ruby
scripts to extract additional information from the capture file.

V. REesuLts

A. Preliminary scans

Fig. 2 shows the results of our different scans.

In total, we discovered 5,905,934 unique IPv4 addresses
responding to the NTP packets. The mode 1 packets got much
fewer responses than the mode 3 packets.

48,841 IPs were only discovered using mode 1 requests,
suggesting some servers may not respond to mode 3 packets
at all.

Due to the nature of this scan, it is impossible to tell if
a response is from an actual NTP server. For instance, we
found some servers which simply echo incoming port 123
UDP packets. Of the 5,905,934 IPs discovered in the prelim-
inary scan, our second tool nfpscan wasn’t able to get a valid
response from 802,256.

May 16 mode 3 5258736
May 16 mode 1 []400012
May 20 mode 3 5458718
May 20 mode 1 8447530

Total unique 5905934

0 2 x 106 4 x 108
IPs responded

Fig. 2: Preliminary scan results.

B. Version responses

In text, we make use of a presentation like 1->3 to mean
that a client (mode 3) packet with version 1 was responded
to with a server (mode 4) packet with version 3.

In tables, we use a column per version sent, and the cell
value is the version that was received. An empty cell indicates
that the server did not respond to that version.

In Table II, we tested our tool with 5 different daemons.

In Table III, we tested ntpscan against various servers
from known big tech companies.

It should be noted that this scan type is very sensitive to
rate-limits. For instance, a chronyd server might be misrep-
resented as fingerprint 1->1 3->3 4->4 if all version 2
requests and/or responses were dropped or lost. We discuss
this further in Section VI.

Table IV shows the most common fingerprints.

By far the most common fingerprint is the one shared by
chronyd and ntpsec.

TABLE II: VERSION RESPONSES OF POPULAR DAEMONS

version response fingerprint
daemon | vO | v1 | v2 | v3 | v4 | V5 | v6 | V7
ntpd 11213145)|6]|7
chronyd 1 2 314
ntpsec 1 2 314
ntpd-rs 3 4
openntpd 1 2 31415 6 | 7

TABLE III: VERSION RESPONSES OF SERVERS BY COMPANIES

version response fingerprint

company | vO | vl | v2 | v3 | v4 | v§ | v6 | V7
Microsoft 3 3 3 3
Apple 1 2 3 415 6 |7
Google 1 2 3 415 6 |7
Cloudflare 1 2 3 4
Amazon 1 2 3 4
Meta 1 2 3 4

TABLE IV: Tor MODE 3 VERSION FINGERPRINTS

version response fingerprint
vO | vl | v2 | v3]| v4]| Vv5 | v6 | v7 | frequency
11234 2777895
1 21314 |5]16|7 1502870
Ol 11213145]|6]|7 158995
o]l 1|2]3]|4 58003
1 213 56050
3313313 (3]3]3 39241
313133 33154
3|4 32907

Aside from the common few fingerprints, we also discov-
ered a few less-common but distinct ones, like always
responding with 4: 0->4 1->4 2->4 3->4 4->4 5->4 6-
>4 7->4, which was seen 1289 times. Or mirroring the client
version except for versions beyond 4: 0->0 1->1 2->2 3-
>3 4->4 5->4 6—>4 7->4, which was seen 1770 times.

We also discovered servers that only responded to one
version.

C. Reference IDs

Reference IDs in the NTP specification may be interpreted in
three different ways depending on the stratum field. Stratum
1 servers use a 4-byte ASCII string identifying the reference
clock. Servers with a higher stratum set the IPv4 address of
the reference server as the reference ID, when using IPv6,
they use the first 4 bytes of the MDS5 digest of the IPv6
address. Stratum O packets are Kiss-o’-Death packets, and the
reference ID is an ASCII string denoting the error.

We will first cover the reference IDs found on stratum 1
servers. The most common ID was empty with 4 null-bytes.
The second was the ASCII string LOCL. See Fig. 3.

null-bytes] 27380
LOCL

INIT

GOOG

GPS
127.127.127.1
127.0.0.1
ACTS

EXT

PPS

] 17238

ASCII Reference 1D

Frequency

Fig. 3: Top few ASCII identifiers of stratum 1 servers

Internally, NTP uses addresses starting with octets 127.127
to refer to different local reference clocks.

Drivers have addresses in the form 127.127.t.u, where t
is the driver type and u is a unit number in the range
0-3 to distinguish multiple instances of the same driver.

— NTP Reference Clock Support [13]

However, 127.127.127.1 isn’t known to correspond to
any specific driver.

Because so many stratum 0 servers responded with GOOG
as the identifier, we decided to investigate these further, and
found that 3504 of the 3683 discovered servers are from just
35 prefixes, nearly all of which start with octet 103. These
prefixes and additional comments are listed in Appendix B.

For servers that are not stratum 1, the reference ID is either the
IPv4 address of the reference server, or the first four octets of
the MD5 hash of the IPv6 address. We do not have a method
for differentiating between the two, so we interpreted all as
IPv4 addresses. Fig. 4 shows the most common reference IDs
for servers beyond stratum 1.

null-bytes] 225948
o 127.127.1.0 C——————1 139106
= 200.33.150.30 40067
9 10.44.32.14 36884
£ 61.130.120.25 34958
5 153.96.1.45 33007
5 216.239.35.0 L1 32853
& 77.223.114.123 29684
¥ 200.20.186.75 29412
& 203.248.240.140 28878
— 81.113.102.43 27293
127.127.1.1 23308
N OT =3 == == NN
g EdA3Sx
SEs8cococo02 o
S885g8eg8¢
frequency

Fig. 4: Top few IPv4 reference identifiers for non-stratum-1 servers

Omitted from these results are servers which responded with
stratum 0. These packets should be Kiss-o’-Death packets, but
we have found some servers sending stratum O packets with
common identifiers like 127.0.0.1 and INIT. This may
indicate that these servers are wrongly setting the stratum field
to 0.

The reference ID that is default on an uninitialized ntpd-rs
daemon, XNON, was not discovered once.

A more complete list of reference IDs of stratum 1 servers
can be found in Appendix A.

D. Strata

The most common stratum used was 3. Fig. 5 shows the
frequencies of the ten most common strata.

E. Variables responses

We discovered 1,111,566 servers that responded to the mode
6 read variables command. The scanner omitted responses
from 1280 servers because they could not be converted to
ASCII.

a) Variable system: The system variable contains the
name of the operating system. We slightly altered the data

stratum 1] 64365
stratum 2 | 1104371
£ stratum 3 | 1732748
£ stratum 4 r 805702
“ stratum 5 377258
stratum 6 [] 99125
stratum 11 [] 111409
MR >0 BT R
EEEEEES
8838883888
frequency

Fig. 5: Frequency of top 10 strata

by removing version and architecture information as well as
the common UNIX/ prefix. Table V shows the most common
operating systems, a complete list is in Appendix D.

TABLE V: MOST COMMON OPERATING SYSTEMS

operating system | frequency
UNIX 798692
cisco 95595
Linux 65676
/ 62234
FreeBSD 50807
JUNOS 21925

b) Variable version: The version variable contains the
version of the daemon. The most common versions are shown
in Table VI. In the case of ntpd and ntpsec versions, we
truncated them to just the first 3 digits (x .y . z). The complete
list is in Appendix E.

TABLE VI: MOST COMMON DAEMON VERSIONS

daemon version | frequency
4 798586
ntpd 4.2.8 80451
ntpd 4.2.0 44281
ntpd 4.1.1 6287
ntpd 4.2.6 5409
ntpd 4.2.4 2419

¢) Variable processor: The processor variable contains the
architecture of the server. All architectures with more than a
1000 occurrences are listed in Table VII, the complete list is
in Appendix F.

TABLE VII: MOST COMMON ARCHITECTURES

architecture | frequency
unknown 798731
amd64 47286
armv7l 37251
mips 10302
x86_64 9670
powerpc 8212
octeon 7912
i386 6173
arm 2379
aarch64 2324
ppc 2313
mips64 1417

d) Other variables: We found a number of unusual variable
identifiers. We found 33 servers with a variable called
LANTIME, for example LANTIME=LANTIME/GPS170/
M600/V7.08.024/SN030111. These are likely instances
of Meinberg LANTIME servers. We also found 7 servers
using the variable host.

Furthermore, we found 118 servers with corrupted variable

identifiers. This is an example of a corrupted response:
3="4", 3-926154393-926154393="unknown",
926154393="UNIX", leap=0,
4491979-stratum=3, precision=-24,
Additionally, we found 34,723 servers that add a single
null-byte after their refid value. We found that both
the servers with corrupted responses and servers with
the null-byte all share the variables version="4",
processor="unknown", system="UNIX" (when not
corrupted) and the version fingerprint 1->1 2->2 3->3 4-
>4,

e) Response size: We measured the sizes of the readvars
responses and compiled the histogram in Fig. 6.

360000 F 7 7 T T T
320000 |
280000 f
240000 f
200000 f
160000 f
120000 f
80000 f

40000 F E
0 [|

E W TS XS
Cooooo0 oo S
SESRSESRSRSRS RS R I

frequency

response size in bytes

Fig. 6: Histogram of readvars response sizes

3000 :
2700 b
2400 b
> 2100 -
£ 1800 -
2. 1500 1
£ 1200 -
900 .
600 .
300 .

|
Omp—u—nwwww%%m
SO U N NO

= e = === =R = =]
OODOOOOOOO

OO O OO OO OO

response size in bytes

Fig. 7: Histogram of monlist response sizes

F. Monlist responses

We discovered 6617 servers that responded to monlist requests
without errors.

Many responses were small, below 500 bytes. However,
the most common response size we saw was 16,080 bytes,
which we saw 2116 times. Given that the request is only 50
bytes, this is an amplification factor of ~321. We also notably
received 252 responses of 32,160 bytes, and 74 responses of
48,800 bytes.

Table VIII shows the implementation code and opcode
used by the responses. Some servers respond to both the
old implementation code (IMPL_XNTPD_OLD) and the new
implementation code (IMPL_XNTPD), in which case we used
to biggest response.

TABLE VIII: IMPLEMENTATION CODE AND OPCODE OF MONLIST RESPONSES

implementation code opcode frequency

IMPL_XNTPD_OLD REQ_MON_GETLIST 4899

IMPL_XNTPD_OLD | REQ_MON_GETLIST_1 149
IMPL_XNTPD REQ_MON_GETLIST 1345
IMPL_XNTPD REQ_MON_GETLIST_1 224

We’ve seen many servers where existing tools like nmap
with the ntp-monlist.nse script and the latest version
of ntpdc both weren’t able to get a monlist response, but our
custom tool was. This is because ntpdc sends a request with
opcode 42 (REQ_MON_GETLIST_1 and only attempts
other versions of the protocol after an error is received, but
does nothing on a timeout. nmap’s ntp-monlist.nse
script simply doesn’t try other versions of the protocol. Our
tool always sends a request with all possible codes uncondi-
tionally, which yields more results when daemon’s do not
respond to code 42 at all. Additionally, nfpdc has had a bug
since at least 2004, which causes it to report a timeout with
large responses. [14]

We found 1118 servers that responded to both monlist and
readvars. This allowed us to construct Table IX.

TABLE IX: NTPD VERSIONS OF MONLIST ENABLED SERVERS

version frequency

ntpd 4.2.6 914
ntpd 4.2.0 90
ntpd 4.2.4 62
ntpd 4.2.2 29
ntpd 4.2.8 11
ntpd 4.2.5 10
ntpd 4.2.1 1

G. Servers acting as a proxy

We found a number of servers that reply with a different
source-IP than what they were probed with. Using the ran-
domized transmit timestamps from our fingerprint scan to pair
mode 3 requests with mode 4 responses, we discovered 2151
servers that reply under a different source-IP.

H. Use of timestamps

During our analysis, we found a number of interesting behav-
iors regarding how servers set the timestamps in their mode
4 responses.

We saw 29,892 servers that set the Origin Timestamp to
the same value of as their Transmit Timestamp, instead of
using the Transmit Timestamp from the mode 3 packet. This
behavior corresponds to earlier versions of the SNTP speci-
fication (RFC 4330) and interferes with our fingerprinting
method because our randomized transmit timestamp is not
reflected back.

We saw 3013 servers that round the Origin Timestamp
to the nearest second, which also interferes with our finger-
printing method, but could be accounted for in future scans.

We saw 1,184,304 servers that set the Receive Timestamp
to that of the Origin Timestamp.

1. Kiss-o’-Death RATE packets

We found only 38 servers that responded with Kiss-o’-Death
RATE packets (signalling a rate-limit has been hit). This
means that our default spread of 2 seconds between packets
is likely sufficient.

V1. DiscussioN

Scanning for UDP services is difficult, as it is hard to detect
when a packet is dropped. During our scan, we monitored for
dropped packets on the host machine, but did not do so for
upstream devices like firewalls and routers. We have found
that intensive scans like these can easily reach a machine’s
max tracked connection count. Because of this, we think it
may be a good idea to perform a slower preliminary scan, as
well as having more monitoring set-up. A slower scan might
also produce better scan results because there is less chance
of triggering a remote firewall.

Aside from hitting firewalls, the importance of not hitting
the daemon’s rate-limit should also be stressed. We have found
that many daemons are configured to not send Kiss-o’-Death

packets. Without these packets, it is impossible to determine
if a packet was dropped on purpose. When an undetected rate-
limit has occurred, it will skew the version scan results. This
is often recognizable by an impossible version fingerprint. We
tried our best to tune the scanner for a proper balance of speed
and accuracy.

We saw that the scan results were fairly volatile, which
means it is important to minimize the time between the
preliminary scan and the second in-depth scan. Our time dif-
ference of over a month between the scans may have degraded
our results. Our tool and methodology also didn’t allow us to
check for false positives from the preliminary scan, as ntpscan
just reports servers as offline when no valid packet is received.
The preliminary scan did not differentiate between actual NTP
servers responses and other UDP responses. For instance, we
found a number of servers which just echo incoming packets.

We also think the monlist scanning ability of our
custom scanner could be improved. We only received
empty responses to the pre-ipv6 protocol implementation
(IMPL_XNTPD_OLD), which could mean that our tool does
not send proper requests for that protocol. As that version
has no support for error codes, it is harder to work with.
There’s also no documentation for the either mode 7 imple-
mentation, so we worked solely by reviewing the ntpdc and
ntpd sourecode and reverse engineering packets. We believe
it might be possible to find more monlist enabled servers
by properly trying all 4 combinations of implementation and
request codes.

Our fingerprinting method relies on sending a randomized
transmit timestamp to pair responses packets to their requests.
However, we found cases where a server does not directly
copy the transmit timestamp to the origin timestamp of the
response packet, as shown in Section V.H.

There are a number of things we did not test for, but for
which we think data might be interesting. For instance, we
did not try modes other than 3, 6 and 7. We also did not try
commands other than readvars and monlist in modes 6 and
7. We believe there might be cases of broken authentication
for mode 6, which could allow an attacker to set variables
or use the mrulist command, which replaced monlist. For
fingerprinting, it might also be interesting to send types of
invalid packets, like using mode O or sending the wrong
packet size. We did manually analyze the behavior of how
timestamps are set by servers in Section V.H and in the future
we would like to incorporate this analysis into ntpscan and
draw comparisons with the version fingerprint.

We would also like to see more research done into servers
that appear to be proxy-ing other servers.

VII. CoNCLUSION

To answer RQ1, we believe to have found a reliable way of
discovering NTP servers using zmap. We nearly had 6 million
results, although this did include some false positives. Other
methods may result in less false positives, like using nmap,
of which the service/version scan has the ability to parse
incoming packets.

For RQ2, we believe that especially the readvars command
is of value when gathering information from an NTP server,
as it is an immediate means of gathering valuable information
while only sending a single packet, and we were surprised to
see nearly 22% of daemons respond to it. For servers that do
not respond to this command, we believe our fingerprinting
method using the version in mode 3 packets to be useful.
However, when using fingerprinting methods that rely on the
presence of certain responses, extreme care should be taken
not to invoke the rate-limits of the daemon.

For finding monlist enabled servers, we already found our
custom tool to yield more results than ntpdc, in at least some
areas. Yet ntpscan’s ability to scan for monlist enabled servers
is still incomplete, as it does not properly implement the pre-
ipv6 implementation of mode 7. We think there might be even
more monlist servers that have gone undetected.

To answer RQ3, we found the vast majority of servers to
have very similar characteristics. However, overall, we found a
great variety different operating systems, daemon versions and
architectures. Many of the characteristics we found correspond
to routers, firewalls and other network infrastructure.

Due to the number of NTP servers with monlist support and
their response sizes, we believe DDoS amplification through
NTP is likely still viable. We found many monlist enabled
servers to be from just a few AS numbers, and we hope that
by contacting these hosts we could further reduce the number
of public monlist enabled servers.

REFERENCES

[11 J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey,
and M. Karir, “Taming the 800 Pound Gorilla: The Rise and Decline
of NTP DDoS Attacks,” in Proceedings of the 2014 Conference
on Internet Measurement Conference, in IMC 'l14. Vancouver, BC,
Canada: Association for Computing Machinery, 2014, pp. 435-448.
doi: 10.1145/2663716.2663717.

[2] M. Kiihrer, T. Hupperich, C. Rossow, and T. Holz, “Exit from hell?
reducing the impact of amplification DDoS attacks,” in Proceedings of
the 23rd USENIX Conference on Security Symposium, in SEC'14. San
Diego, CA: USENIX Association, 2014, pp. 111-125.

[3]1 D. Kopp, C. Dietzel, and O. Hohlfeld, “DDoS Never Dies? An IXP
Perspective on DDoS Amplification Attacks,” in Passive and Active
Measurement, O. Hohlfeld, A. Lutu, and D. Levin, Eds., Cham: Springer
International Publishing, 2021, pp. 284-301.

[4] Accessed: Jun. 19, 2025. [Online]. Available: https://www.ntp.org/
documentation/4.2.8-series/ntpdc/

[5] Matthew Prince, Accessed: Apr. 25, 2025. [Online]. Avail-
able: https://blog.cloudflare.com/technical-details-behind-a-400gbps-
ntp-amplification-ddos-attack/

[6] L. Rudman and B. Irwin, “Characterization and analysis of NTP ampli-
fication based DDoS attacks,” in 2015 Information Security for South
Africa (ISSA), 2015, pp. 1-5. doi: 10.1109/ISSA.2015.7335069.

[7] T. Rytilahti, D. Tatang, J. Kopper, and T. Holz, “Masters of Time: An
Overview of the NTP Ecosystem,” in 2018 IEEE European Symposium
on Security and Privacy (EuroS&P), 2018, pp. 122—136. doi: 10.1109/
EuroSP.2018.00017.

[8] J. Krupp, M. Karami, C. Rossow, D. McCoy, and M. Backes, “Linking
Amplification DDoS Attacks to Booter Services,” in Research in At-
tacks, Intrusions, and Defenses, M. Dacier, M. Bailey, M. Polychronakis,
and M. Antonakakis, Eds., Cham: Springer International Publishing,
2017, pp. 427-449.

[9] N. Minar, “A Survey of the NTP Network,” 1999. [Online]. Available:

https://api.semanticscholar.org/CorpusID:17133789

Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-

wide scanning and its security applications,” in 22nd USENIX Security

Symposium, 2013.

[10]

(1]
[12]
[13]

[14]

NTP Project, [Online]. Available: https://support.ntp.org/Support/
AccessRestrictions

Rein Fernhout, [Online]. Available: https://github.com/LevitatingBusi
nessMan/ntpscan

Dave Mills, [Online]. Available: https://www.eecis.udel.edu/~mills/ntp/
html/refclock.html

NTP Project, [Online]. Available: https://bugs.ntp.org/show_bug.cgi?
id=286

https://doi.org/10.1145/2663716.2663717
https://www.ntp.org/documentation/4.2.8-series/ntpdc/
https://www.ntp.org/documentation/4.2.8-series/ntpdc/
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
https://doi.org/10.1109/ISSA.2015.7335069
https://doi.org/10.1109/EuroSP.2018.00017
https://doi.org/10.1109/EuroSP.2018.00017
https://api.semanticscholar.org/CorpusID:17133789
https://support.ntp.org/Support/AccessRestrictions
https://support.ntp.org/Support/AccessRestrictions
https://github.com/LevitatingBusinessMan/ntpscan
https://github.com/LevitatingBusinessMan/ntpscan
https://www.eecis.udel.edu/~mills/ntp/html/refclock.html
https://www.eecis.udel.edu/~mills/ntp/html/refclock.html
https://bugs.ntp.org/show_bug.cgi?id=286
https://bugs.ntp.org/show_bug.cgi?id=286

APPENDIX A: ASCII RerFereNCE IDs

The following table consists of all reference IDs report by
stratum 1 servers which occurred more than once.

In cases where the string is not valid ASCII, we either
converted the string to an IP in range 127.0.0.1/8 or displayed
the hexadecimal value instead.

Reference ID | frequency
0x00000000 | 27380
LOCL 17238
INIT 7172
GOOG 3683
GPS 2778
127.127.127.1 | 1802
127.0.0.1 981
ACTS 584
EXT 552
PPS 479
PTP 211
VMTP 207
GNSS 171
NICT 125
MRS 92
PTPO 51
PHCO 47
NIST 38
GPSs 33
DCF 28
MBGh 23
PPSO 22
MBS 21
IRIG 20
SPG 18
MX7 17
GSL 17
ATOM 15
SEL_ 14
PZF 14
CTD 14
0xd05b703c 13
BD 13
DCFa 12

Reference ID

frequency

127.127.1.1

12

WAAS

11

127.127.1.0

11

oa

el

kPPS

PPS

FREQ

GLN

GPGL

LOCA

GPPS

pps

LCL

NMEA

BDS

SHM

TSTR

IRGO

0x00001251

DCFs

TC

GPS

oJJY

BBgp

MBG

PSMO

OLEG

Oxa625daSa

PTP

0Oxa9fea97a

DTS

CABL

0x00000001

TMNL

PHC

LCOL

0xc057ad48

GPS0

C

W W|W|W|WW|W|lR]|PR]PR]P+R]PRRRRRRPl]]ORN NN NN N]|0]|©O

103.155.53.0\24 (112)
Reference ID | frequency 103.159.254.0\24 (16)
GMR 3 103.167.190.0\24 (256)
103.167.191.0\24 (256)
0xa6258257 | 3 103.174.23.0\24 (40)
ONBR 3 103.178.188.0\24 (256)
103.229.255.0\24 (42)
KPPS 2 103.55.242.0\24 (256)
PZFs 2 103.55.243.0\24 (256)
103.58.74.0\24 (24)
HARD 2 103.58.75.0\24 (18)
103.75.138.0\24 (256)
TG 2 180.94.28.0\24 (28)
FREE 2 180.94.29.0\24 (256)
203.76.220.0\24 (53)
SOCK 2 203.76.221.0\24 (28)
ROA 7 203.76.222.0\24 (40)
203.76.223.0\24 (12)
GPS1 2
PTPs 2 It should be noted that we did not only receive stratum 1
GOOG packets from these prefixes. They were also found to
ANT2 2 contain many servers configured as stratum 3 or higher.
MSF 2
2712771 > AprPENDIX C: COMMON VERSION FINGERPRINTS
XFAK 2 The following table contains all fingerprints that appeared
more than a 1000 times.
NOVL 2
ANTI1 2 version response fingerprint
SHO 2 vO | vli|v2]|v3]|v4]|v5|v6| v7| frequency
GAL 2 11 2(3]4 2777895
GPSD 2 L2345]16]7 1502870
G+BD 2 0 1 2 3 4 5 6 7 158995
GNSs 7 0 1 2 3 4 58003
1] 2
GPS<space> |2 u 26050
3 3 3 3 3 3 3 3 39241
ApPENDIX B: GOOG RESPONSES 313133 33154
3 4 32907
The following list is all \24 prefixes of which 10 or more
IPs responded with a stratum 1 GOOG response. According to 2)13 (4 31945
whois records, all of them are registered in Bangladesh. 1] 2 4 31791
1 3 4 30825
103.112.204.0\24 (119)
103.112.206.0\24 (17) Lf2]3]14[5]6¢6 16551
103.112.207.0\24 (51) 1 2 3 4 5 7 14836
103.122.74.0\24 (16)
103.126.149.0\24 (17) t[2)313 33 147
103.12.74.0\24 (32) 1121314 6|7 14391
103.13.193.0\24 (12)
103.137.66.0\24 (32) N e N BTN B
103.137.67.0\24 (29) 11213 51617 14188
103.142.184.0\24 (23) 112 41 s 67 13897
103.143.182.0\24 (2506)
103.143.183.0\24 (256) 1 314151617 13539
103.146.17.0\24 (158)
103.150.255.0\24 (16) ! 3 7729
103.155.52.0\24 (167) 2|3 7453

version response fingerprint

vl

vli|v2|v3|vd | V5] v6

v7

frequency

1 4

7050

2 4

6473

6144

4466

4164

4063

4022

version response fingerprint
vO | vl | v2 | v3]| v4d | V5| v6 | v7 | frequency
313 31313313 1891
3 3131313133 1829
0] 1 21314141414 1770
4 14| 4|4)|4]4]4]4 1289
11213 6 1031
1 213 5 1016

3543

2822

2730

2586

2559

2493

W W W W W] W | W
(o)}

2479

2428

—
[NS2 B SCT B SR I NS R B NS B SR BN SO B SR BN S I S

2381

D ||]]

2353

BN BENEN BN BENE BEN]

2345

2344

2339

[NSR N2 B NS I]

2322

EEN N N N B B
=)}

2268

2264

[Be N e N Ie)

2240

W | W]] D

2187

2185

BN BENIN BUSEN BEN BN BN

2184

2182

2177

(S}
wWlwlw]lw|lw]|w
~

2176

2173

2159

wWwWla|lajlaoajla|laalan]|

2143

DN REOSEE BEN N RS BRI BN

2138

2131

LN lWwWluhnlw]lwm v |wn|Owv|wv]|]wn

2106

2066

2065

W W W | W W] Ww]|] W]l Ww

2050

[SSIN BEOSEY SN B B RN B RUSE N N

1919

Wl Wl Wl W

WlWw|lWw]lx |32

1915

APPENDIX D: SYSTEM VARIABLE RESPONSES

operating system frequency
UNIX 798692
cisco 95595
Linux 65676
/ 62234
FreeBSD 25415
FreeBSDJNPR 25392
JUNOS 21925
SunOS 351
vxworks 302
QNX 179
VMkernel 120
AIX 100
Windows 87
NetBSD 79
Isilon OneFS 32
eCos 56
HPUX 33
Data ONTAP 17
Darwin 12
unknown 11
Chiaros 9
SecureOS 9
BRIX 9
LeoNTP 7
OpenVMS 5
WINDOWS/NT 5
EqualLogic (R) storage array 2
HongmengOS 2
BSD/OS 2
SCO 2
DECOSF1 2
NOS 1

operating system

frequency

IRIX

1

Win2003

1

Unixware2

1

Solaris

GBOS

Moscad ACE

IPSO

NetWare

uClinux

APPENDIX E: DAEMON VERSIONS

version frequency
4 798586
ntpd 4.2.8 80451
ntpd 4.2.0 44281
ntpd 4.1.1 6287
ntpd 4.2.6 5409
ntpd 4.2.4 2419
ntpd 4.1.0 527
ntpd 4.2.7 373
ntpd 4.3.99 343
ntpd 4.3.105 272
ntpd 4.2.2 154
ntpd 4.1.2 26
ntpd 4.2.5 17
ntpd 4.2.1 12
unknown 11
2 9
ntpd 4.0.99 6
Wangjing NTP 1.0 5
ntpd 4.1.72 4
ntpd ntpsec-1.1.3 8
ntpd ntpsec-1.2.2 3
ntpd ntpsec-1.1.0 3
ntpd 4.3.93 2
Domain 1

APPENDIX F: ARCHITECTURES

architecture frequency
unknown 798731
amd64 47286

architecture frequency
armv7l 37251
mips 10302
x86_64 9670
powerpc 8212
octeon 7912
i386 6173
arm 2379
aarch64 2324
ppc 2313
mips64 1417
arm64 786
1686 673
armvStejl 579
armv3b 412
UltraSparc-1le 300
armv7b 254
armvol 223
armv5tel 189
Titan-AM335X 123
aarch64_be 86
x86 80
xIr 65
i586 46
sundv 41
Tridium_NPM-6xx_Board 29
i86pc 27
kppc 24
sbmips 22
sh4 17
Power Macintosh 12
PowerPC 10
i486 9
armv4tl 9
armv4l 9
blackfin 8
se100 8
sundu 7
ARMV7E-M 7
x86-SSE2 6
AM335X 5
OHSYS3 5
Tridium_NPM3xx_Board 5

architecture

frequency

Jace_PPC_405

5

Tridium_Jace7xx_Board

seil4

x64

Working

00OFBFAS5F4B00

armv5teb

4
2
2
2
2
2

m68k

Tankvision_NXAS8x

$390x

AT91SAM9260

00F9C1964C00

seil3

00FA74164C00

Sabre_SDB-Freescale_i.MX6_SoloX_Sabre_SDB

armv3l

Honeywell_IPC-QNX7_on_i.MX6_SoloX

x86pc

8540ADS

Edgel0

Infinera-AMM

m68knommu

evbarm

	Introduction
	Research Question 1
	Research Question 2
	Research Question 3

	Background
	Network Time Protocol
	DDoS Amplification using NTP

	Related works
	Methods
	For reliably identifying NTP servers (RQ1)
	For gathering useful information from an NTP server (RQ2)
	Mode 6 readvars
	Mode 7 monlist
	Mode 3 version responses
	On rate-limits
	Choice of tooling
	ntpscan

	For performing the over-all scan and analysis (RQ3)

	Results
	Preliminary scans
	Version responses
	Reference IDs
	Strata
	Variables responses
	Variable system
	Variable version
	Variable processor
	Other variables
	Response size

	Monlist responses
	Servers acting as a proxy
	Use of timestamps
	Kiss-o'-Death RATE packets

	Discussion
	Conclusion
	References
	ASCII Reference IDs
	GOOG responses
	Common version fingerprints
	System variable responses
	Daemon versions
	Architectures

